

STEREOSCOPIC /
ANAGLYPH CAMERA FOR

XNA

This report is for my final year computing project for Games Technology
BSc which investigates how 3D works in film and video games. It aims to
create an easy to use library for indie developers to write a game for the
Xbox Live Indie Game network. The creation of this library will aid in the

immersion of video games and help make the player feel that they are in
the game.

Computing Project

First Marker:
Sophie Pink

Second Marker:
Tess Aurmoogum

1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

Contents

Contents ... 1

1 Introduction .. 6

1.1 Aims and Objectives .. 6

2 Research .. 7

2.1 Real 3D World ... 7

2.1.1 How Humans See ... 7

2.2 What is Stereoscopic? ... 8

2.3 What is Anaglyph? ... 10

2.4 Advantages .. 11

2.4.1 Stereoscopic ... 11

2.4.2 Anaglyph .. 11

2.5 Disadvantages ... 12

2.5.1 Stereoscopic ... 12

2.5.2 Anaglyph .. 14

2.6 Virtual 3D World .. 15

2.6.1 3D Films .. 15

2.6.2 3D Games / Consoles ... 16

2.7 Current 3D Libraries .. 16

2.7.1 Unreal Development Kit (UDK) Tutorial .. 16

2.7.2 XNA Code ... 17

2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.7.3 Xbox Development Kit (XDK) ... 17

2.8 Vectors .. 18

2.9 Matrices ... 18

2.10 Summary of Research ... 20

3 Methodology ... 21

3.1 The Project .. 21

3.2 Chosen Platform .. 21

4 Project Requirements ... 23

4.1 Requirements Table .. 23

4.2 Requirements .. 24

5 Design .. 25

5.1 Library Functionality .. 25

5.2 Library Design .. 25

5.2.1 Classes and Functions .. 25

5.3 Implementation Plan ... 27

5.4 Testing Design ... 28

5.5 Expected Outcome .. 29

6 Implementation .. 30

6.1 Overview ... 30

6.2 Creating Project ... 30

3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.2.1 Constructor .. 31

6.2.2 Initialize .. 31

6.2.3 LoadContent ... 31

6.2.4 Update.. 31

6.2.5 Draw ... 32

6.3 Camera .. 32

6.4 Dual-Viewports .. 35

6.5 Stereoscopic .. 36

6.6 Render Targets .. 37

6.7 Changing Anaglyph Colours .. 37

6.8 Increase Convergence ... 38

6.9 Rotation ... 38

6.10 Translation ... 38

6.11 Creating the Library ... 39

6.12 Problems ... 39

6.12.1 Viewing Stereoscopic and Anaglyph .. 39

6.12.2 Aspect Ratio ... 40

6.12.3 Image Separation ... 40

7 Testing ... 41

7.1 Requirements Recap ... 41

4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

7.2 Test Phase 1... 42

7.2.1 More Information .. 42

7.3 Test Phase 2... 43

7.3.1 More Information .. 43

8 Evaluation ... 44

8.1 Recap ... 44

8.1.1 Stereoscopic ... 44

8.1.2 Anaglyph .. 45

8.1.3 Translation / Rotation .. 45

8.1.4 Library .. 45

8.2 Conclusion ... 46

8.3 Techniques and Abilities Learnt .. 47

8.4 Future Development ... 47

9 Appendix ... 48

9.1 Appendix 1 – UML Diagram .. 48

9.2 Appendix 2 – Setup of GraphicsDeviceManager ... 48

9.3 Appendix 3 – Camera’s Projection Code ... 49

9.4 Appendix 4 – Camera's View Code .. 49

9.5 Appendix 5 – Dual Viewport Code .. 50

9.6 Appendix 6 – SpriteBatch Drawing ... 50

5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9.7 Appendix 7 – Changing Anaglyph Colours .. 51

9.7.1 Previous Code .. 51

9.7.2 New Style ... 51

9.8 Appendix 8 – Changing Convergence .. 51

9.9 Appendix 9 – Rotating the Cameras .. 51

9.10 Appendix 10 – Translating the Cameras ... 52

10 Bibliography .. 53

6

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

1 Introduction

This project is a library that can be easily implemented by XNA indie game developers to

include stereoscopic and anaglyph (3D) effects.

The use of this library is to reduce development time for indie developers who wish to

include 3D stereoscopic and anaglyph effects into their games.

Anaglyph 3D effect has been implemented in films and games for many years and doesn’t

require a new 3DTV which is why this is being included in this project.

Stereoscopic is a new technology which is currently being used within the games industry in

big AAA titles like Batman: Arkham Asylum (Rocksteady Studios, 2009), Call of Duty: Black

Ops (Treyarch, 2010) and Crysis 2 (Crytek, 2011).

To create the stereoscopic effect which projects objects in a 3D space, the research will look

into the original discovery of seeing 3D from 2D images and then implement the same idea

in a 3D environment.

1.1 Aims and Objectives

This project will explore various techniques that have been used to create the stereoscopic

and anaglyph effect in games and how it is possible to give the feeling of depth on a 2D

image. Whilst other big named developers have used the stereoscopic and anaglyph effect,

this project will research why they haven’t been used in many video games and low budget

games. It will explore several techniques that are relevant to the creation of the 3D effect

and try to identify the best way to implement this effect with minimal impact of the frame-

rate.

7

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2 Research

2.1 Real 3D World

Before attempting to create stereoscopic and anaglyph effects it is important to know how

humans perceive objects in the real world in 3D.

2.1.1 How Humans See

Humans can only see 2D in the real world, however having two eyes that are at a distance

apart gives the brain two 2D images in which the brain perceives depth along with the width

and height as seen in Figure 1. Using this knowledge you can trick the brain into viewing a

3D image from 2D images directed to each eye.

“Each eye captures its own view and the two separate images are sent on to the

brain for processing. When the two images arrive simultaneously in the back of the

brain, they are united into one picture. The mind combines the two images by

matching up the similarities and adding in the small differences. The small

differences between the two images add up to a big difference in the final picture!

The combined image is more than the sum of its parts. It is a three-dimensional

stereo picture.” (Cooper, n.d.)

8

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

FIGURE 1 – TWO EYES = THREE DIMENSIONS (3D) (COOPER, N.D.)

2.2 What is Stereoscopic?

Stereoscopic images work the same as real world 3D i.e. by looking at each image from the

viewpoint of each eye. The brain then takes these images and combines them into one

picture with the slight offsets being viewed as depth as shown in Figure 2 and Figure 3. This

creates an image with width, height and depth.

“It is the added perception of depth that makes 3-D, or stereoscopic, vision so

important. With stereoscopic vision, we see exactly where our surroundings are in

relation to our own bodies, usually with considerable precision. We are particularly

good at spotting objects that are moving toward or away from us, and the

positioning of our eyes means we can see partially around solid objects without

needing to move our heads. It's easy to see why some people believe stereoscopic

vision evolved as a means of survival.” (Speck, 2003).

9

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

FIGURE 2 – IMAGE OF HOW THE IMAGES LOOK FOR EACH EYE. (SPECK, 2003)

FIGURE 3 – VIEWS OF AN OBJECT FROM EACH EYE (CHAPMAN, 2011)

1
0

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.3 What is Anaglyph?

Anaglyph is the same as stereoscopic but instead of using a side-by-side view, it overlays the

two images and colours them, in most cases red and cyan. To view an anaglyph image the

viewer is required to wear anaglyph glasses which commonly contain a red and cyan filter.

The way anaglyph glasses work is by the red filter showing anything that is tinted red as

white and showing cyan as black and vice versa. This means that the red filter will only see

the red coloured parts and the cyan filter will only see the cyan coloured parts. See Figure 4

which illustrates how this effect works and Figure 5 for an example of an anaglyph image.

FIGURE 4 – HOW ANAGLYPH WORKS (SONY, 2010)

FIGURE 5 – ANAGLYPH IMAGE (ANDREW, 2010)

1
1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.4 Advantages

There are many advantages to using stereoscopic and anaglyph 3D. The major advantage for

both is the user can perceive depth and can be immersed into the story or world the

director or developer chooses. In the following sections some major advantages of using

both stereoscopic and anaglyph effects will be discussed along with how it could be used in

this library.

2.4.1 Stereoscopic

Stereoscopic has many advantages such as better colour compared to anaglyph and that

fact that the required passive polarised glasses are cheap and allow the user to tilt their

head. With the depth perception of 3D, it helps the player feel like the content they are

viewing is real and helps immerse the player or viewer of 3D films / games. This in turn helps

the user to follow the story with more depth and feel for the characters on screen.

Immersion in games is the key to story-telling as the player feels he is the character or

'knows' the character. This means that the player tries to keep the player alive and can feel

the emotions of the character and the surroundings.

2.4.2 Anaglyph

The main advantage of anaglyph is that any screen or print can utilise the technology and

the required glasses normally come free with the print or can be purchased very cheaply. It

is possible to include 3D anaglyph images in books and magazines which can be viewed

easily and on the move. The required glasses can be supplied for free due to the minimal

cost of coloured filters and cardboard. This makes it a very good medium for viewing 3D on

a mass scale that everyone can afford and enjoy.

1
2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.5 Disadvantages

There are a number of disadvantages for both stereoscopic and anaglyph 3D. For both 3D

techniques the user should ideally keep their head exactly vertical to view the 3D effect at

its best.

The following sections discuss some major disadvantages of using both stereoscopic and

anaglyph 3D effects and how it may be possible to solve these issues.

2.5.1 Stereoscopic

Some disadvantages of using Stereoscopic are the need to view the images on a 3D enabled

television set and the requirement to wear polarised filters / liquid crystal shutter glasses.

These glasses can often make the image darker.

Shutter glasses have many disadvantages over passive glasses. Firstly they require a battery

to power the circuitry which electronically locks out each eye in turn so that it doesn't view

the image meant for the opposite eye. This shuttering is prone to flickering if the frame rate

is not high enough and requires constant charging or changing of batteries. The electronic

nature of the glasses and special equipment they contain result in their cost being

considerably more than passive glasses.

If the stereoscopic effect isn’t used correctly then issues can appear when viewing 3D

images which can cause eye strain resulting from trying to view both images and having the

brain attempt to perceive depth.

Some issues that can occur with stereoscopic are:-

1
3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

¶ Skybox and trees can appear 2D at the same depth in the distance.

¶ Heads-Up Display (HUD) can be uncomfortable to view important information like

health bars etc.

¶ Labels or messages in a game could appear to float away from the required target.

¶ Crosshairs and sights can become very inaccurate due to them appearing at the

wrong depth.

¶ Image crosstalk (or “ghosting”) appearing due to part of the left eye image appearing

on the right eye and vice versa. See Figure 6 for an example of crosstalk.

Some possible fixes to these issues range from drawing the 2D image on both viewports at

same position to drawing the crosshairs etc. at the correct depth. (Schneider, 2008)

FIGURE 6 – PHOTO DEMONSTRATING 3D CROSSTALK AND GHOSTING THROUGH SONY ACTIVE GLASSES FROM IMAX

SPACE STATION 3D (SONEIRA, 2011)

1
4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.5.2 Anaglyph

The disadvantages for the Anaglyph technique are the main reason this technique isn’t used

much in film and games. Some issues with anaglyph are as follows:-

¶ Loss of colour – All the colour is removed by the red/cyan tints of the glasses.

¶ Ghosting – Same as with stereoscopic 3D but the colour filters don’t filter the entire

colour correctly.

¶ Eye strain – Long periods of viewing through anaglyph glasses can cause eye strain

and headaches.

¶ Tilting – The user viewing this 3D technique must keep their head vertical otherwise

the 3D effect will not work.

This method of 3D is only useful if the user doesn’t have any new 3D stereoscopic

technology available and the developer wishes to include 3D effects for as many users as

possible.

1
5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.6 Virtual 3D World

2.6.1 3D Films

The biggest film released that started the 3D technology boom is Avatar (Avatar, 2009)

which was filmed using RealD 3D technology and played in a RealD 3D equipped cinema.

Avatar (Avatar, 2009) changed the way the world views 3D in films and games and pushed

the new type of technology to be replicated at home with individuals seeing and filming in

3D.

3D film for home uses a technique called Side-by-Side in which the television set splits the

3D image into two images and processes them to give the viewer the 3D effect. See Figure 7

for a Side-by-Side view.

FIGURE 7 – AVATAR 3D USING SIDE-BY-SIDE (AVATAR, 2009)

1
6

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.6.2 3D Games / Consoles

Nintendo Virtual Boy

Nintendo Virtual Boy was released in 1995. With this system the device supplies a separate

image to each to replicate the way stereoscopic 3D technology works. Unfortunately many

reports of eye strain and eye damage resulted in Nintendo issuing a statement saying that

children under 7 should not use this device.

Nintendo 3DS

Nintendo 3DS is Nintendo’s next 3D device which works by using a liquid crystal parallax

barrier which can be enabled or disabled. When it is enabled it only lets the left eye see the

left pixels and same with the right eye.

A game on the Nintendo 3DS called "Super Monkey Ball 3D" (Sega, 2011) is a fast paced

game which causes the 3D effect to be very hard to view and makes this game very hard to

play when in 3D mode.

2.7 Current 3D Libraries

2.7.1 Unreal Development Kit (UDK) Tutorial

Christopher Berry (Berry, 2011) has produced a tutorial on how to create a stereoscopic

camera for UDK which can be used with the Unreal Engine. However, to create a game with

Unreal Engine you are required to obtain a development kit from Microsoft and a

development license from Epic for the Unreal Engine both of which are extremely

expensive. The average budget for an indie game on the iPhone market is $35,000 (Anon.,

2011) which makes the Microsoft and Unreal licences prohibitively expensive and Microsoft

only issue Xbox Development Kit’s (XDK’s) to publishers and partners.

1
7

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.7.2 XNA Code

XNACommunity (Ferrero, 2009) has some sample XNA code for old versions of the XNA SDK

which shows how to implement an anaglyph camera without much of a frame-rate issue but

requires drawing 2 textures using a sprite batch.

Roy Triesscheijn (Triesscheijn, 2011) has some High Level Shader Language (HLSL) for

drawing the textures with the required colour tints. This method uses a quad to render the

final textures onto the screen which means this is not the best method to implement.

The above code works well for displaying 3D but doesn’t make it easy to implement or

manage separation / convergence on the fly. This results in the issue of the developers

spending more development time working on how to implement and make the above

methods work.

2.7.3 Xbox Development Kit (XDK)

Microsoft released an update for the Xbox 360 in 2011 to include developers to add 3D

support which allows developers to render the scene into two 720p frame buffers directly

whereas games such as Crysis 2 (Crytek, 2011) and Call of Duty: Black Ops (Treyarch, 2010)

use a single 720p frame buffer and render using 2 different cameras (Yin-Poole, 2011).

Using the XDK, the developer has access to checking if the display connected has 3D

capabilities by checking to see if the “D3DPRESENTFLAG_STEREOSCOPIC_720P_60HZ” flag

is set. If this flag is set then the developer can then draw to a separate frame-buffer that is

separated by an active space. (Microsoft, 2011)

Since this method can only be used with the XDK this cannot be implemented in XNA, a tool

widely available for indie developers to create a quick and simple game.

1
8

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.8 Vectors

A vector is commonly a collection (array) of numbers, usually floating point numbers

(floats). This project will use many Vector3’s which are 3 floats that are represented as X, Y

and Z and are normally written as
ὼ
ώ
ᾀ

. In 3D games Vector3 is widely used. The main use for

them is in positioning, rotation and scaling of objects in a 3D space.

¶ X is the sideways component or the width.

¶ Y is the vertical component or the height.

¶ Z is the forward component or depth.

2.9 Matrices

A matrix is a collection of values in three columns of three rows. The matrix contains the

position, rotation and scale.

A matrix commonly looks like ὭὨὩὲὸὭὸώ
ρ π π
π ρ π
π π ρ

.

If a matrix contains a position without any rotation then the matrix will look like ὴέίὭὸὭέὲ

ὼ π π
π ώ π
π π ᾀ

.

1
9

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

“Matrices can be thought of as representing the transformation (or change) in

orientation and position required to get from one Coordinate Space, or Frame of

Reference, to another one. Imagine two people, one standing up, and one lying

down (or try it yourself). To the person who is standing, up is up, down is down,

forward is forward, etc. But to the person lying down, forward is really up, and

backward is really down, and down is forward, and up is backward. Earth's gravity

dictates that our normal frame of reference has "down" pointing towards the center

of the earth, but even then, everything has its own local frame of reference, where

"up" and "down" are in relation to the person or thing and not in relation to the

earth. All a matrix contains is a vector pointing in the direction that the local

reference frame considers "up" when seen from the global, Identity reference frame

(you have to have some fixed frame that you measure everything else in relation to),

plus another vector pointing "right", and another vector pointing either "forward" or

"backward", depending on convention.” – (McNally, 1999)

2
0

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

2.10 Summary of Research

After researching stereoscopic and anaglyph it appears that both effects should be

implemented to allow the developer to give the 3D experience to as many users of the

game as possible.

To give the 3D effect this project will take the dual camera approach to mimic the eyes of

the player. It will render the scene to two viewports displayed on 3DTVs using the Side-by-

Side mode which in turn will give the 3D effect. It will use sprite batch to draw both render

targets with the required colours.

With a large number of indie games not implementing a stereoscopic / anaglyph camera

due to lack of time for research or implementation, this library will be created using XNA

with Microsoft’s C# language for use on the Xbox Live Indie Games network.

XNA is a very powerful tool which aids new indie games to be developed for the Xbox 360.

New games developers starting out writing indie games generally don’t have the time to

research and implement new technology into their games. This library is a tool to allow

these developers to include stereoscopic and anaglyph effects in their games without the

need of research or specialist 3D knowledge. This will help produce new indie games with a

higher level of polish and immersion.

2
1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

3 Methodology

3.1 The Project

This project is to create a library for rendering a scene in either stereoscopic or anaglyph 3D.

The library will need to be easy to implement for new and existing indie developers and

allow for extensibility.

3.2 Chosen Platform

With this library being created to make it easy for indie developers to use new 3D

technology in their games, this library will be developed using Microsoft’s C# language using

the Microsoft .Net framework and XNA Software Development Kit (SDK).

C# is an industry standard object-oriented language and is the language used with XNA to

write indie games for the Xbox 360, PC and Windows Phone.

XNA is a powerful and efficient framework for developing games which utilises the DirectX

Application Programming Interface (API) and is free to develop with.

DirectX is used to communicate with the graphics and sound cards to display the 3D models

and play audio.

In general, the average indie developer has no time to research and implement stereoscopic

cameras due to their complexity. The reason for creating a library is to allow for indie

developers to easily and quickly implement a stereoscopic camera without needing to

research or test, helping the indie developer to create games for new and upcoming

technology.

Due to the entry level indie games having to be created with XNA and C# these are the

technologies that the library will be developed for. With XNA being a framework for DirectX,

2
2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

this library can also be converted to work with DirectX and C++ with little effort for the

developer making XNA and C# the best starting point for this library.

2
3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

4 Project Requirements

4.1 Requirements Table

Requirement
Number

Description

1 Create a 3D camera to render a 3D scene for a 3DTV (Stereoscopic).

2 Use 3D cameras from Stereoscopic to render for Anaglyph.

3 Apply translation and rotation to the 3D cameras.

4 Create an easy to use and easy to implement library.

2
4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

4.2 Requirements

1. Stereoscopic:

This will allow developers to create a stereoscopic camera for use on a side-by-

side 3DTV to view a 3D scene. With this in place the 3DTV can then show the

scene in 3D view with special glasses provided with the television.

2. Anaglyph:

With the above camera implemented the library can then render each camera

to a render target to allow the ability to overlay both images with a colour for

the type of glasses being used.

3. Movement:

With the above implemented, allow the developers to translate and rotate the

cameras to view the full 3D scene without having to control each camera.

4. Library Implementation:

With all the required features included, create an easy to use library for the

developer to utilise.

2
5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

5 Design

5.1 Library Functionality

The Stereoscopic / Anaglyph Camera for XNA will consist of two cameras for XNA 4.0

framework to give the stereoscopic 3D effect for users who have 3D televisions or Red /

Cyan filtered glasses with an option to change the filter colours.

5.2 Library Design

5.2.1 Classes and Functions

To aid in the creation of the library, a UML diagram will be created before the

implementation stage. See Appendix 1 for the UML diagram.

The sections below discuss the content and functionality of each class:-

IDrawableObject

The “IDrawableObject ” interface has to be implemented by a custom class which can

then be passed into the 3D camera draw method. This will cause all “IDrawableObject ”

classes to be drawn once for each camera and then rendered using the required technique.

Camera

The “Camera” class is used to create two cameras with separate viewports. This will contain

all the information the camera needs including its view and projection matrices for its

viewports, position and rotation. This class can be implemented individually which can help

the developer quickly overload or use the default to view a standard 2D scene.

2
6

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

Camera3D

The “Camera3D” class will contain two camera instantiations, one for each eye, and

manages both cameras for translating and rotating so that both cameras will always be

'looking' at the correct location. This class will deal with creating the viewports and setting

up the camera classes. This class will also have a virtual “Draw” method which will be used

in all classes that implements this class to draw the models as required.

StereoCamera

The “StereoCamera ” class will implement the “Camera3D” class and deals with drawing all

models with a different camera. This will then appear to have a side-by-side stereoscopic

effect that will work on all 3DTVs to show depth into the scene.

AnaglyphCamera

The “AnaglyphCamera ” class will implement “Camera3D” class and create render targets to

draw the scenes, one for each eye. Once both cameras have been used to render the scene

into the two render targets, it then draws both render targets to the screen using the

“SpriteBatch ” class with a colour tint for each eye.

2
7

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

5.3 Implementation Plan

To aid the implementation and ensure that the library gets created in the correct order, an

implementation plan will be created. This will detail each of the major stages and specify the

order in which these need to be completed. The order should follow on from the previous

due to the previous stage being the requirement for the next.

Stage Description

1 Implement a camera.

2 Implement split-screen with two cameras.

3 Offset cameras and rotate slightly (Stereoscopic).

4 Render both cameras to render targets.

5 Draw both render targets for Anaglyph.

6 Add ability to change Anaglyph colours from default (Red/Cyan).

7 Add ability to increase convergence.

8 Create rotation / translation functions to camera.

9 Make the library easy to use and implement.

2
8

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

5.4 Testing Design

During the implementation of this library, testing will have to be completed in order to

meet the design requirements. To ensure all parts satisfy the requirements, a test plan will

be created. This test plan will list the tests which must pass before going proceeding to the

next test. These tests will indicate any errors which need to be addressed and how they

should be resolved with regards to the requirements.

Test
Number

Description Pass /
Fail

Fixes if required Comments

1 The camera updates the view
matrix.

2 Models are drawn.

3 Two viewports side-by-side.

4 Camera offset gives 3D effect.

5 Render targets draw.

6 Changing of colours works.

7 Changing of convergence
works.

8 Rotating of the camera works
and doesn’t lose focus.

9 Translating of the camera
works and doesn’t lose focus.

2
9

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

5.5 Expected Outcome

With the design above, the expected outcome of this library is to be able to implement both

a stereoscopic and anaglyph camera which shows a side-by-side view of the scene. This

scene can then be displayed using a 3DTV to produce the 3D effect viewed using special

glasses or via anaglyph glasses that can filter out the colour for the target eye.

3
0

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6 Implementation

6.1 Overview

Due to the library being aimed at indie developers to allow them to create 3D games for

Windows and Xbox 360, XNA is the perfect choice to create this project.

Using C#.Net along with XNA, it makes it quick and easy to start a simple library project. This

library will then allow 3D cameras to be implemented in a game via the developers utilising

the required interfaces to have a scene rendered to the screen in 3D.

6.2 Creating Project

Since this library is being developed using Microsoft C#.Net and XNA, the Integrated

Development Environment (IDE) used will be Microsoft Visual Studio 2010. Visual Studio is a

very powerful program for creating other applications and when starting a new project will

list a selection of templates as a starting point.

The starting template used as a testing area for this project is the “Windows Game (4.0)”.

This then creates an entry point to start the game in the “Program.cs” file and will run the

code inside the “Game1.cs”.

All code will be tested using the Game1 class by creating instances of each class and simply

drawing each one sequentially.

The Game1 class creates many methods which the XNA framework will call for setting up

the graphics and loading of assets.

The next section details each method and how these can be used to load and display

models.

3
1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.2.1 Constructor

The Game1 constructor will be responsible for setting up the “GraphicsDeviceManager ”

and setting the content’s root directory. The root directory is the folder where all compiled

assets will be stored. To set up the “GraphicsDeviceManager ” (See Appendix 2) it first

needs to be instantiated into a variable “graphics ”. Once this has been declared as an

instance, it is possible to setup the size of the window to 720p or the current display size

(See Appendix 2). If the developer wishes to have the game full-screen then this can be

implemented here by setting the variable “IsFullscreen ” to true. This can also be used to

instantiate other variables including lists of “DrawableObjects ”.

6.2.2 Initialize

The initialize code section is where all the objects that will be used are set up. This is where

the camera and drawn objects should be created and setup.

6.2.3 LoadContent

The LoadContent section of the code is used to load all assets for the drawn objects and is

responsible for creating an instance of the “SpriteBatch ”. The sprite batch will be

required for the anaglyph camera to draw the two overlay tinted images.

6.2.4 Update

This section of the code will be called for every frame which commonly is sixty times per

second. This will be dealing with checking inputs and calling the “Update ” methods of the

camera and drawn objects. This will also call other methods for physics and effects.

3
2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.2.5 Draw

The Draw method is used for clearing the “GraphicsDevice ” to a single colour. By default

this is Cornflower Blue but normally changed to black to see the objects being drawn more

easily. This will also deal with drawing all of the objects by calling the draw methods inside

the drawn objects. For drawing the models using this library, this will only call the draw

method of the camera passing in all the objects. This is turn will draw the objects.

6.3 Camera

In order to view any 3D assets in a scene there first has to be a camera which contains the

view and projection matrices.

Cameras in games are a view into the games world just like in film where the camera is the

view into another world. The camera moves around a 3D space and shows you on a 2D

screen what it can see. This can be used to view and control an avatar in or be in a first-

person view and make the user feel that they are controlling themselves in a 3D world.

The projection matrix for a camera is the basis of its view. To calculate the projection matrix

one needs to know the field of view, aspect ratio and drawing planes i.e. where its range of

vision.

The field of view is similar to a human’s vision; the camera can only see for example 90° in

its peripheral vision.

The aspect ratio is so the camera knows how to display objects. This is commonly a ratio of

16/9 for widescreen displays.

3
3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

The drawing planes are the distances from which the camera can see from and to. Anything

beyond the max value won’t be picked up by the camera. See Figure 8 and Figure 9 for

diagrams.

See Appendix 3 for implementation of the camera’s projection.

Creating the projection alone isn’t enough for a camera; it also needs to have a view matrix.

The view matrix tells the graphics card where it is in the world and where it is looking. To

create a view matrix you need to know where the camera is, where it is looking and what is

the 'up' direction of the camera. The 'up' direction is where the top of the camera is located

and normally calculated based on the rotation of the camera. See Appendix 4 for

implementation of the camera’s view.

FIGURE 8 – SHOWING CAMERA PROJECTION FROM THE SIDE.

Camera Position

Near Plane

Far Plane

3
4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

FIGURE 9 – SHOWING CAMERA PROJECTION FROM THE FRONT.

Near Plane

Camera Position

Far Plane

Aspect

Ratio

3
5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.4 Dual-Viewports

“Think of a viewport as a kind of window. The viewport delimits what is visible to the

camera. It defines the sides of the view frustum or "viewing pyramid". The viewport

defines the distance from the camera to the projection plane. The viewport also

defines a rectangle on the projection plane, and anything outside of this rectangle is

not visible. In effect, this rectangle defines the field of view, or FOV. The FOV is

usually represented with an angle, which is the angle formed by the sides of the

rectangle with the camera location.” (Tremblay, 1999)

For the stereoscopic effect to work on 3DTVs there needs to be two viewports side-by-side.

To create this in XNA, two viewports are required, one for each camera. Each viewport

requires a size and position. A viewport can calculate the aspect ratio but this wouldn’t be

valid as the viewports would be half the value of the physical screen. To rectify this, the 3D

camera will require its own aspect ratio that is calculated using the screens main viewport.

See Figure 10 for diagram and see Appendix 5 for the implementation of the dual viewport.

3
6

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.5 Stereoscopic

The stereoscopic effect can now be implemented by attaching each camera to each

viewport which will give the Side-by-Side view for 3DTVs. This can be achieved by creating a

new class which deals with positioning and rotating the two cameras.

FIGURE 10 – SHOWING SIDE-BY-SIDE VIEWPORTS.

Screen

Left Viewport Right Viewport

3
7

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.6 Render Targets

A render target is used to tell the graphics card to render something to a 2D texture. This

can then be used to either draw a second view onto the main screen or to render the whole

scene using two different cameras and then to overlay with a colour tint which can be used

to display an anaglyph 3D view.

To use a render target, it first needs to be created with the required size and colour depth.

Once this has been created then the drawing can be set to draw everything to that texture.

After this the graphics card is reset to draw onto the screen during which the texture can be

drawn with a red / cyan colour.

Since anaglyph cameras require two cameras, each camera will have to be rendered into a

separate render target. To implement this, two render targets are required to be declared in

the “AnaglyphCamera ” class and in the Draw function the graphics card needs to know to

render the scene into each camera’s render target.

Drawing of the render targets are the same as drawing a simple Texture2D. To draw each

render target, the “SpriteBatch ” has to be started to draw any 2D asset to the screen such

as a Texture2D or RenderTarget2D. Check Appendix 6 for implementation.

6.7 Changing Anaglyph Colours

Due to the many different types of Anaglyph glasses, this library should have the ability to

support all variations. To change the colour of the anaglyph colours, when drawing the

Texture2D onto the screen using the “SpriteBatch ”, the colour parameter must be

changed from the testing Red and Cyan colours to parameters for the Anaglyph camera

class. This will change the colour tint of the drawn image to the one specified by the

developer. See Appendix 7.

3
8

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.8 Increase Convergence

The convergence is the distance between the two cameras. Changing this distance causes

the point where the lines of sight of each cameras converge to move into the distance or

move towards the user.

To increase the convergence of the 3D cameras, the cameras have to be slightly moved

apart or closer to change the focus point. This allows the distant objects to look more

distant and closer objects to look closer. When changing the convergence the closer or

distant objects will become out of focus. See Appendix 8 for how this is achieved.

6.9 Rotation

When rotating the camera, the library will have to update the rotation of both cameras

whilst keeping the convergence. This rotation will be used when calculating the view matrix

and which way is forward and up for the camera. This will allow for the cameras to be used

in a space style game where the camera might need to rotate on all axes without producing

any visual errors. To see how this is implemented refer to Appendix 9.

6.10 Translation

The translation of the cameras will move the cameras around without affecting their

separation. This should keep the effect of the 3D as long as the camera maintains its focal

point on the main player or avatar and will produce a nice feel of immersion.

To implement translation the 3D camera has to take the distance to translate and add this

to the current position of the two cameras. This is achieved by simply calling the "Add"

method on the Vector3 structure. To see how to implement translation, refer to Appendix

10.

3
9

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.11 Creating the Library

A library is a Dynamic Link Library (DLL) which can be imported into a project and allows the

developers to access all contained classes and methods that are declared as “public ”. This

means the developer using this library can then implement a stereoscopic or anaglyph

camera by just creating an instance of either “StereoCamera ” or “AnaglyphCamera ” and

allows access to the methods for translation, rotation and drawing.

6.12 Problems

Throughout the process of implementing the stereoscopic and anaglyph library there have

been many problems to address. The next section will discuss these problems and how they

were overcome.

6.12.1 Viewing Stereoscopic and Anaglyph

The initial problem was the lack of ability to view the stereoscopic and anaglyph images and

ascertaining if they were working as expected. To view anaglyph images a special pair of

glasses is required with Red and Cyan filters over the eyes. This was resolved by purchasing

a cheap pair of red and cyan anaglyph glasses online.

Viewing stereoscopic side-by-side images requires the use of a 3DTV that can render these

and a pair of polarized or shutter glasses. There is a technique to view this effect called the

cross-eye method that doesn't require glasses but this can cause strain on the eyes and

doesn't provide a clear to view of the whole scene. Initially was resolved by learning to view

side-by-side images using the cross-eye method but this was unsatisfactory due to the

blurriness of the background. This was finally overcome by purchasing a small 3DTV with

polarized glasses.

4
0

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

6.12.2 Aspect Ratio

When viewing the scene in anaglyph, the scene rendered correctly due to the camera using

the graphics viewport to calculate the aspect ratio. When switching to the stereoscopic

camera, this used the same method but caused the aspect ratio to half showing half the

scene. This wasn’t expected and looked stretched when viewed on the 3DTV. After looking

at other 3D games on the Xbox 360, it became apparent that the aspect ratio should be

applied using the screens aspect ratio rather than the viewport. This was resolved by

accessing the viewport of the main graphics device rather than the viewport of the camera.

6.12.3 Image Separation

The stereoscopic and anaglyph effect didn’t produce the image exactly and looked very

blurry near the edges. This was due to the cameras not having any rotation on the toe-in

angle. With a slight rotation on the toe-in angle it causes the depth to go beyond the screen

and fix any issues with the blurriness with the final image. The solution to this was to slightly

rotate the two cameras towards each other.

4
1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

7 Testing

During the implementation process, each test was completed in stages and stopped on

errors and documented. To check that the requirements had also been implemented, this

was be checked by testing each component until an error has been found or each section

worked as expected.

7.1 Requirements Recap

Requirement
Number

Description

1 Create a 3D camera to render a 3D scene for a 3DTV (Stereoscopic).

2 Use 3D cameras from Stereoscopic to render for Anaglyph.

3 Apply translation and rotation to the 3D cameras.

4 Create an easy to use and implement library.

4
2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

7.2 Test Phase 1

Test
Number

Description Pass /
Fail

Fixes Comments

1 The camera updates the view
matrix.

Pass N/A

2 Models are drawn. Pass N/A

3 2 viewports side-by-side. Pass N/A

4 Camera offset gives 3D effect. Fail Change
Rotation

The 3D effect didn’t look right
when viewed through a 3DTV.
To correct this, the two
cameras had to be rotated
slightly inwards.

5 Render targets draw. N/A N/A

6 Changing of colours work. N/A N/A

7 Changing of convergence works. N/A N/A

8 Rotating of the camera works
and doesn’t lose focus.

N/A N/A

9 Translating of the camera works
and doesn’t lose focus.

N/A N/A

7.2.1 More Information

When looking at the stereoscopic effect, the 3D assets didn’t align up and was too straining

on the eyes to view. This was rectified by changing the initial convergence on the cameras

and by adding a slight rotation to each camera.

4
3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

7.3 Test Phase 2

Test
Number

Description Pass /
Fail

Fixes Comments

1 The camera updates the view
matrix.

Pass N/A

2 Models are drawn. Pass N/A

3 Two viewports side-by-side. Pass N/A

4 Camera offset gives 3D effect. Pass N/A

5 Render targets draw. Pass N/A

6 Changing of colours work. Pass N/A

7 Changing of convergence works. Pass N/A

8 Rotating of the camera works
and doesn’t lose focus.

Pass N/A

9 Translating of the camera works
and doesn’t lose focus.

Pass N/A

7.3.1 More Information

Each stage passed but the anaglyph images didn’t produce enough of a separation. This was

resolved by increasing the space between the two cameras.

4
4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

8 Evaluation

8.1 Recap

Looking at the requirements from the design, it is possible to see that the project was a

success by looking through the implementation and testing sections. These show that all

requirements have been implemented and are working.

Requirement
Number

Description

1 Create a 3D camera to render a 3D scene for a 3DTV (Stereoscopic).

2 Use 3D cameras from Stereoscopic to render for Anaglyph.

3 Apply translation and rotation to the 3D cameras.

4 Create an easy to use and implement library.

8.1.1 Stereoscopic

The first requirement from the above table was to implement and render a stereoscopic

technique to give the perception of depth in a 3D scene. This was achieved by creating two

viewports side-by-side and attaching two cameras to them. This was then locked into place

using a class to control each camera position using separation. Since this can be seen with

the cross-eye method and on a 3DTV, this has been marked as a success.

4
5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

8.1.2 Anaglyph

The anaglyph requirement was to have the two cameras render to a render target which is

then drawn to the screen overlaying each image with a required colour tint. This was

achieved by telling the sprite batch that deals with drawing 2D images to the screen to draw

these render targets at the top left of the screen with the required colours for that eye.

Since this can be viewed with the red and cyan colours showing on the edges of the models

and with the ability to see the depth using anaglyph glasses, this has been marked as a

success.

8.1.3 Translation / Rotation

Now that the two above effects have been implemented, the cameras need to be moved

and rotated. This was accomplished by changing the rotation values and calculating the

position from the rotation matrix which are then used to calculate the view matrix. The view

matrix then affects what is displayed to the screen. Since the user can move the camera and

rotate them using the keyboard as an input, this has been marked a success.

8.1.4 Library

With all the previous requirements completed the library could be packaged into a library

for other developers to use. This required starting a new project and porting all classes into

the project and setting the build type as a library.

This has been tested by creating a new XNA game and referencing the library to use the

classes defined in the library. In the new game project it is possible to add the 3D cameras

and translate / rotate the cameras with ease. Due to this working as expected and being

easy to implement, this has been marked a success.

4
6

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

8.2 Conclusion

Microsoft C#.Net and XNA framework was the perfect language and framework to use for

the ease of starting a project and seeing objects on the screen. With indie developers able

to write games quickly and simply for the Xbox 360, XNA was the only choice for this. Since

XNA contains all the helper classes for Vectors and Matrices, it meant there was no need to

implement and research how to calculate or manipulate them. Other classes that helped

with the creation of this library were already built into XNA and C#.Net including full

documentation for each class and method and a small example how to use each directly

from MSDN.

Research has shown the best practices to follow and helped to implement the 3D effects

without running into many problems.

Breaking down each section to implement into a table helped implement the top level item

and work down. By creating the standard camera class first this then helped when creating a

3D camera by being able to include two standard cameras.

All the results from the testing phase shows that this project was a success and can be used

in a new project to create a game with 3D stereoscopic and anaglyph functionality with little

coding.

4
7

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

8.3 Techniques and Abilities Learnt

Throughout the whole of this project many techniques and new abilities have been learnt

including how the split-screen 3D system works and how we perceive depth in the real

world and how stereoscopic effects uses this to trick the brain to view depth.

All these techniques and abilities learnt in this environment can now be transferred to a

different language or environment with ease.

8.4 Future Development

Now this project has been successfully created, there is scope for more functionality to be

implemented and improved.

The functionality of this library will give the typical indie developer for the Xbox Live Indie

Games to implement a stereoscopic / anaglyph 3D camera.

To make it possible for more advanced indie developers writing games for the Xbox Live

Arcade to use this library, it could be re-coded in DirectX. With the XNA framework based on

the DirectX API, this should be a relatively straight forward process.

One major function that could be implemented in the future is the ability to set the focal

point of the cameras which would allow the 3D camera to calculate the separation required

to produce the 3D effect without making it blurry for the users.

For most developers targeting the Xbox 360 using the XDK or DirectX for non-indie games,

C++ is the most used language along with DirectX. To appeal to an even wider range of

developers, this tool could also be produced using C++ which could then be used in the XDK

or other frameworks.

4
8

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9 Appendix

9.1 Appendix 1 ɀ UML Diagram

Below is the UML diagram for the design of the code. This will be the structure to help aid

the creation of the stereoscopic and anaglyph cameras.

9.2 Appendix 2 ɀ Setup of GraphicsDeviceManager

graphics = new GraphicsDeviceManager(this);

graphics.PreferredBac kBufferWidth =

GraphicsAdapter.DefaultAdapter.CurrentDisplayMode.Width;
graphics.PreferredBackBufferHeight =

GraphicsAdapter.DefaultAdapter.CurrentDisplayMode.Height;

The above creates a new GraphicsDeviceManager passing a reference to the Game. Next it

sets the width and height of the graphics to the current display width and height.

4
9

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9.3 Appendix 3 ɀ #ÁÍÅÒÁȭÓ 0ÒÏÊÅÃÔÉÏÎ #ÏÄÅ

Projection = Matrix .CreatePerspectiveFieldOfView(MathHelper .PiOver4, AspectRatio,
0.1f, 10000.0f);

The parameters of this function are all floats and perform the following:

¶ fieldOfView – Sets the viewing angle of the camera to 90°.

¶ aspectRatio – Sets the aspect ratio (16/9 if widescreen).

¶ nearPlaneDistance – Sets the near clipping plane to 0.1

¶ farPlaneDistance – Sets the far clipping plane to 10000

9.4 Appendix 4 ɀ Camera's View Code

View = Matrix .CreateLookAt(Vector3 .Backward, Vector3 .Zero, Vector3 .Up);

This matrix takes three parameters all of type Vector3 and do the following:

¶ CameraPosition – Sets the cameras position.

¶ CameraTarget – Sets where the camera is looking at.

¶ CameraUpVector – Sets the 'up' vector when rotated.

5
0

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9.5 Appendix 5 ɀ Dual Viewport Code

aspectRatio = graphicsDevice.Viewport.AspectRatio ;

leftViewport = graphicsDevice.Viewport;
rightViewport = graphicsDevice.Viewport;

if (stereo)
{
 leftViewport.Width /= 2;

 rightViewport.X = leftViewport.Width;
 rightViewport.Width /= 2;
}

This first sets the aspect ratio from the main viewport then calculates the left and right

viewport position and width.

9.6 Appendix 6 ɀ SpriteBatch Drawing

SpriteBatch.Draw(rightTarget, Vector2 .Zero, Color .Cyan);
SpriteBatch.Draw(leftTarget, Vector2 .Zero, Color .Red);

The above draws both textures to the screen using the sprite batch. The three parameters

perform the following:

¶ Texture – The Texture2D or RenderTarget2D to draw.

¶ Position – The top left position to draw the image.

¶ Colour – The colour to tint the image.

5
1

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9.7 Appendix 7 ɀ Changing Anaglyph Colours

To change the colours of the anaglyph images, the parameter for the colour will change

from Color.Red / Cyan to a parameter for the Anaglyph camera as shown below.

9.7.1 Previous Code

SpriteBatch.Draw(rightTarge t, Vector2 .Zero, Color .Cyan);
SpriteBatch.Draw(leftTarget, Vector2 .Zero, Color .Red);

9.7.2 New Style

SpriteBatch.Draw(rightTarget, Vector2 .Zero, rightEyeColour);
SpriteBatch.Draw(leftTarget, Vector2 .Zero, leftEyeColour);

9.8 Appendix 8 ɀ Changing Convergence

separation += amount;

if (separation < 0.0f)
{
 separation = 0.0f;
}

UpdatePosition();

The above adds the amount of separation required to the current separation and then

checks to make sure the separation is not less than zero. Once the separation has been

checked it then updates the position of the cameras.

9.9 Appendix 9 ɀ Rotating the Cameras

leftCamera.Rotation = Vector3 .Add(rotation, new Vector3 (0.0f, 0.001f, 0.0f));
rightCamera.Rotation = Vector3 .Subtr act(rotation, new Vector3 (0.0f, 0.001f, 0.0f));

The above rotates the cameras whilst retaining the toe-in angle.

5
2

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

9.10 Appendix 10 ɀ Translating the Cameras

leftCamera.Position = Vector3 .Subtract(position, new Vector3 (0.0f, sepa rati on, 0.0f));
rightCamera.Position = Vector3 .Add(position, new Vector3 (0.0f, sepa ration, 0.0f));

The above sets the position of the camera to the position of the 3D camera minus and

addition of the separation.

5
3

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

10 Bibliography

Andrew, 2010. Andrew Hazelden's Blog. [Online]

Available at: http://www.andrewhazelden.com/blog/2010/02/wide-angle-anaglyph-rendering/

[Accessed 11 March 2012].

Anon., 2011. Broken Rules Blog - Indie Project Budgets. [Online]

Available at: http://www.brokenrul.es/blog/?p=793#.T1eB3zFzpCZ

[Accessed 18 January 2012].

Avatar. 2009. [Film] Directed by James Cameron. United States of America: James Cameron and Jon

Landau.

Berry, C. "., 2011. How To Make A Stereoscopic Camera Rig for UDK. [Online]

Available at:

http://thebeardedberry.com/How%20To%20Make%20A%20Stereoscopic%20Camera%20Rig%20for

%20UDK.pdf

[Accessed 20 November 2011].

Chapman, G., 2011. What exactly is Stereoscopic 3D. [Online]

Available at: http://www.projectchapman3d.com/blog/?p=73

[Accessed 10 March 2012].

Cooper, R., n.d. "What is Stereo Vision?". [Online]

Available at: http://www.vision3d.com/stereo.html

[Accessed 28 Janurary 2012].

Crytek, 2011. Crysis 2. s.l.:Electronic Arts.

5
4

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

Ferrero, J. C., 2009. XNACommunity. [Online]

Available at:

http://xnacommunity.codeplex.com/wikipage?title=Stereo&ProjectName=xnacommunity

[Accessed 13 January 2012].

McNally, S., 1999. 3D Matrix Math Demystified. [Online]

Available at: http://www.gamedev.net/page/resources/_/technical/math-and-physics/3d-matrix-

math-demystified-r695

[Accessed 17 November 2011].

Microsoft, 2011. Stereoscopic 3D Fundamentals for Xbox 360 (UK). [Online]

Available at: http://www.microsoft.com/download/en/details.aspx?id=28043

[Accessed 24 March 2012].

Rocksteady Studios, 2009. Batman: Arkham Asylum. s.l.:Eidos Interactive.

Schneider, N., 2008. Programming standards for effective s-3d game development. [Online]

Available at: http://144.206.159.178/ft/CONF/16408309/16408356.pdf

[Accessed 29 Janurary 2012].

Sega, 2011. Super Monkey Ball 3D. s.l.:Sega.

Soneira, D. R. M., 2011. 3D TV Display Technology Shoot-Out. [Online]

Available at: http://www.displaymate.com/3D_TV_ShootOut_1.htm

[Accessed 12 February 2012].

Sony, 2010. 3D Television & Film. [Online]

Available at: http://www.sony.co.uk/res/attachment/file/32/1237478202132.pdf

[Accessed 11 March 2012].

5
5

Ja
m

es
 D

av
ie

s
–

0
9

00
0

26
2

Speck, S., 2003. HowStuffWorks "Stereoscopic Vision". [Online]

Available at: http://computer.howstuffworks.com/3d-pc-glasses1.htm

[Accessed 15 December 2011].

Tremblay, T., 1999. 3D Basics. [Online]

Available at: http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-

theory/3d-basics-r673

[Accessed 13 February 2012].

Treyarch, 2010. Call of Duty: Black Ops. s.l.:Activision.

Triesscheijn, R., 2011. Roy Triesscheijn's Weblog. [Online]

Available at: http://roy-t.nl/index.php/2011/05/08/xna-stereoscopic-3d-using-anyglyphs-and-

redcyan-3d-glasses/

[Accessed 13 January 2012].

Yin-Poole, W., 2011. Eurogamer. [Online]

Available at: http://www.eurogamer.net/articles/2011-05-23-full-stereoscopic-3d-hitting-xbox-360

[Accessed 7 February 2012].

